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Abstract

A new algorithm is developed for the enforcement of constraints within the framework of nonlinear, flexible multi-
body system modeled with the finite element approach. The proposed algorithm exactly satisfies the constraints at the
displacement and velocity levels, and furthermore, it achieves nonlinear unconditional stability by imposing the vani-
shing of the work done by the constraint forces when combined with specific discretizations of the inertial and elastic
forces. Identical convergence rates are observed for the displacements, velocities, and Lagrange multipliers. The pro-
posed algorithm is closely related to the stabilized index-2 or GGL method, although no additional multipliers are
introduced in the present approach. These desirable characteristics are obtained without resorting to numerically
dissipative algorithms. If high frequencies are present in the system, i.e. the system is physically stiff, dissipative schemes
become necessary; the proposed algorithm is extended to deal with this situation.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Multibody dynamics analysis was originally developed as a tool for modeling mechanisms with simple
tree-like topologies composed of rigid bodies, but has considerably evolved to the point where it can handle
nonlinear flexible systems with arbitrary topologies (Nikravesh, 1988; Amirouche, 1992). Multibody sys-
tems can be viewed as a collection of rigid or flexible bodies connected by joints that impose constraints on
the relative motion of the various bodies of the system. The unavoidable presence of these joints is a
distinguishing feature of multibody systems. Most joints used for practical applications can be modeled in
terms of the so called lower pairs (Angeles, 1982): the revolute, prismatic, screw, cylindrical, planar and
spherical joints. In many cases however, joints with specialized kinematic conditions must be developed.
Although it is possible to work with a minimum set of coordinates to represent the system, it is often more
convenient to use a redundant set subjected to constraints. Typically, the constraints are then enforced via
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the Lagrange multiplier technique, and the resulting equations of motion then form a set of differential-
algebraic equations (DAEs). A good review of the many methods that have been developed for dealing with
constrained multibody systems can be found in (Schiehlen, 1990). Four broad classes of method will be
reviewed in the following paragraphs.

A first approach to the analysis of constrained multibody systems is to eliminate the redundant degrees
of freedom and work with a minimum set. Typically, the equations of motion are projected onto the
tangent to the constraint manifold to determine the independent and dependent degrees of freedom. Many
techniques find their basis in this decomposition approach: the zero eigenvalue method (Walton and
Steeves, 1969), the coordinate partitioning method (LU factorization; Wehage and Haug, 1982), the sin-
gular decomposition method (Singh and Likins, 1985; Mani et al., 1985), the QR or householder decom-
position (Kim and Vanderploeg, 1986; Amirouche et al., 1988), and the Gramm-Schmidt orthogonalization
(Liang and Lance, 1987; Agrawal and Saigal, 1989). It has been shown by Kurdila et al. (1990) and
Papastavridis (1990) that all of these methods can be unified within the framework of Maggi’s equation.
Unfortunately, these methods are not a practical approach when dealing with finite element formulations
because they destroy the banded nature of the governing equations.

Another approach is to work with the original set of DAEs. Gear and Petzold (1984), Lotstedt and
Petzold (1986a,b) and Brenan et al. (1989) have given a formal definition of the index of a system of DAE:s.
The governing equations for mechanical systems with holonomic constraints are index-3 DAE:s; typically,
higher indices result in more arduous solution processes. Gear et al. (1985) proposed a method, called the
stabilized index-2 or GGL method, that reduces the index from 3 to 2 and showed that variable-order,
variable-step backward difference methods converge for the resulting index-2 problem. Later, Gear (1988)
developed an approach to further reduce the problem to index-1 DAEs. Of course, these approaches re-
quire additional computational cost in the form of additional Lagrange multipliers. Another approach to
index reduction is the embedded projection method (Borri et al., in press) that can be used to systematically
reduce the index from 3 to 1. Furthermore, it splits the original DAE problem into its algebraic and dif-
ferential parts.

The third approach also involves index reduction techniques, as should be expected in view of the
numerical difficulties associated with index-3 DAEs. However, in this case, index reduction is achieved
by enforcing a time derivative of the constraint. Let ¥ = 0, ¥ = 0 and & = 0 represent the displacement,
velocity and acceleration level constraints, respectively. The system formed by the equations of motion
and the acceleration level constraints then forms a set of index-1 DEAs with invariants. Indeed, for the
exact solution, ¥ = 0 and % = 0 represent two invariants of the system. Unfortunately, an approximate
numerical solution will not evolve on the invariant manifolds, resulting in % # 0 and % # 0. Baum-
garte’s stabilization method (Baumgarte, 1972) was introduced to compensate for this drift. However,
this approach never exactly satisfies the constraints, and relies on problem dependent parameters for
adequate performance. Park and Chiou (1988) and Park et al. (1988) presented a procedure that
achieves stabilization based on a penalty form of the constraint equations. Finally, Bayo et al. (1988)
and Bayo and Ledesma (1996) proposed an augmented Lagrangian approach and a mass-orthogonal
projection was used to satisfy the displacement, velocity, and acceleration level constraints to machine
accuracy.

The last set of methods attacks the index-3 DAEs without prior index reduction. Orlandea et al. (1977)
used numerically dissipative time integrators specifically designed for stiff problems to directly integrate
these equations. Within the framework of finite element formulations for multibody dynamics (Géradin
and Cardona, 2000), the governing equations of motion form a large set of sparse equations for the dis-
placement variables and Lagrange multipliers, i.e. a set of index-3 DAEs. Cardona and Géradin (1989)
showed that the classical Newmark (1959) trapezoidal rule is unconditionally unstable for linear systems in
the presence of constraints. However, the use of dissipative algorithms such as HHT (Hilber et al., 1977)



O.A. Bauchau | International Journal of Solids and Structures 40 (2003) 3253-3271 3255

resulted stable behavior, even for nonlinear systems. Further work by Farhat et al. shows that both HHT
and generalized-o (Chung and Hulbert, 1993) methods achieve stability for a class of constrained hybrid
formulations. In these approaches, stabilization of the integration process is inherently associated with the
dissipative nature of the algorithms.

In recent years, considerable work has been done with energy preserving (EP) schemes and energy de-
caying (ED) schemes. Whereas the classical schemes (Newmark, HHT, or generalized-«) used in finite ele-
ment procedures come with proofs of unconditional stability for linear systems, EP and ED schemes
feature unconditional nonlinear stability. For EP schemes, discretizations of the inertial and elastic forces in
rigid bodies (Simo and Wong, 1991; Simo and Tarnow, 1992), beams (Bauchau et al., 1995; Simo et al.,
1995), plates, and shells (Simo and Tarnow, 1994) have been developed that preserve the total mechanical
energy of the system at the discrete solution level. In view of the positive definite nature of the total me-
chanical energy, this discrete conservation law guarantees the stability of the computational scheme for
nonlinear problems. Puso (2002) developed an energy conserving scheme for rigid—flexible body dynamics
with constraints between the rigid bodies; this scheme achieves nonlinear unconditional stability for a
specific type of constraint. However, while nonlinear unconditional stability is the first step towards the
development of robust algorithms, it does not guarantee, per se, satisfactory performance of the scheme
(Bauchau et al., 2003).

For nonlinear flexible multibody systems, EP schemes perform rather poorly when applied to complex
simulations of engineering interest (Bauchau et al., 1995). The time histories of internal forces and velocities
often present a very significant high frequency content that will hinder the solution convergence process.
Furthermore, this high frequency response is an artifact of the spatial discretization process and contains
no information about the physical behavior of the system. Hence, the presence of high frequency numerical
dissipation is an indispensable feature of robust time integrators for multibody systems. This prompted the
development of ED schemes for beam (Bottasso and Borri, 1997; Bauchau, 1998), shells (Bauchau et al.,
2002) and multibody systems (Bottasso et al., 2001a,b).

In present work, a new algorithm is developed for the enforcement of constraints within the framework
of nonlinear, flexible multibody system modeled with the finite element approach (Géradin and Cardona,
2000), where constraints are typically enforced through the Lagrange multiplier technique. The stiffness of
the resulting equations stems from two sources: the “infinite” frequencies associated with the massless
Lagrange multipliers, and the very high frequencies associated with the elastic components (beam, plates, or
shells) of the system. It must be noted that the former stiffness is due to the formulation: Lagrange mul-
tiplier could be, in principle, eliminated by using a minimum set of coordinates, whereas the latter is in-
herent to the physical nature of the system. The proposed algorithm exactly satisfies the constraints at the
displacement and velocity levels, and furthermore, it achieves nonlinear unconditional stability by imposing
the vanishing of the work done by the constraint forces. The algorithm is second order accurate for dis-
placements, velocities, and Lagrange multipliers. It is also shown that the proposed algorithm is closely
related to the stabilized index-2 or GGL method (Gear et al., 1985), although no additional unknowns are
introduced in the present approach. These desirable characteristics are obtained without resorting to nu-
merically dissipative algorithms. Since the “infinite” frequencies associated with the Lagrange multipliers
are indeed an artifact of the formulation rather than a physical characteristic of the system, it does not seem
appropriate to use dissipative algorithms to solve the numerical problems resulting from enforcement of the
constraints. If high frequencies are present, i.e. the system is physically stiff, ED schemes become necessary;
the proposed algorithm will be extended to deal with this situation.

Section 2 defines the notation used to describe constrained dynamical problems. The EP version of the
proposed algorithm is introduced in Section 3 for scleronomic, rheonomic, and non-holonomic constraints,
and its ED version is then presented in Section 4. The relationship of the proposed algorithm with the GGL
method is discussed in Section 5, and finally, numerical examples are presented in Section 6.
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2. Constrained dynamical problems and notations

The semi discrete equations of motion for constrained multibody problems are written in a generic
manner as

T uy ity it) + 75 (u) + B(u, 1) = T, (1)

where the three terms on the left hand side represents the inertial, elastic, constraint forces, respectively,
whereas the externally applied loads appear on the right hand side. Array u stores the degrees of freedom of
the system, A is the array of Lagrange multipliers, B the constraint Jacobian matrix, and ¢ denotes time. For
Lagrangian systems, the inertial and elastic forces can be derived from the kinetic and strain energy
functions, denoted # (u,%) and 7 (u), respectively. It will be assumed that, in the absence of externally
applied loads, the system is conservative; this implies the conservation of the total mechanical energy of the
system, i.e. & = A + 7" is an invariant of the system. The constraint forces result from the enforcement of
m constraint conditions via the Lagrange multiplier technique. Non-holonomic constraints are assumed to
be linear with respect to velocities and are written in the following form

B (u,t)it + a(u,t) =0, (2)

where the constraint Jacobian matrix is of rank m in order to avoid redundant constraints on the system. If
these equations can be integrated to the form €(u,¢) = 0, the constraints are said to be holonomic and

%(u,t) =0. (3)

In this case, the system must evolve on the constraint manifold, i.e. €(u, ) = 0 is an invariant of the system,
and =0, € =0, etc. clearly are additional invariants. In the presence of holonomic constraints, the
equations of motion consist of Egs. (1) and (3) and form a system of index-3 DAEs (Gear and Petzold,
1984). For non-holonomic constraints Egs. (1) and (2) form a system of index-2 DAEs. Of course, both
holonomic and non-holonomic constraints could appear simultaneously, resulting in a system of index-3
DAEs.

3. Proposed algorithm

The proposed self-stabilized method starts with the following discretization of the equations of motion,
Eq. (1), at the mid-point of a typical time step
T+ T+ Bty = T . (4)

—m

The velocity-displacement relationship are approximated as

U — o U+
== 5
A B (5)

where v = @ is the velocity array. The initial and final times for the time step are denoted ¢ and #, res-
pectively, and subscripts (-); and (-); will be used to indicate the value of a specific quantity at times # and #,
respectively; At = t; — ;. The subscript (), indicates the “mid-point value” of the corresponding quantity.
At the heart of the proposed algorithm is the selection of these mid-point values that will be guided by the
requirement of preservation of system invariants.

For simplicity of the exposition, the case of holonomic constraints will be treated first, and furthermore,
constraints will be assumed to be scleronomic, i.e. € = % (u). Next, the case rheonomic and non-holonomic
constraints will be treated.
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3.1. Scleronomic constraints

The discretization By, will be selected so as to satisfy the following relationship
€ — :B;(Er - u;). (6)
The existence of this discretization is guaranteed by the mean value theorem (Hildebrand, 1976). Indeed,

considering % (u(¢)) to be an implicit function of time and letting u(¢) = u; + (u; — ) (¢ — ;) /(¢ — #;) over
the time step, this theorem guarantees the existence of a time #; € [, ] such that

0¢ | du B 0%
Gluln)) =€) + 35, ,:E(tf — ) =Clu6) + 5 ) (4 — ;). ()
Clearly, the desired discretization is now
0%
Bl =—=|.
=, (8)

To be complete, the scheme defined by Egs. (4) and (5) must be augmented with the following discretized
constraint equations

%; = 0. )
Since the same algorithm is applied at each time step, Eq. (9) also implies €, = 0. Introducing these results
into Eq. (6) now leads to

U+

0=%; - = B, (ur — u;) = AiB, 7 (10)
where Eq. (5) was used. The mid-point velocity is denoted v,, = (v; + v;)/2, and hence
ﬁm:BEszo. (11)

This result illustrates a fundamental property of the proposed algorithm: two invariants of the system are
exactly satisfied, € = 0, Eq. (9), and € = 0, Eq. (11). In other words, the proposed algorithm implies the
satisfaction of the constraints at both displacement and velocity levels. The key to achieving the preser-
vation of both invariants, is the proper selection of B,,, as defined in Eq. (6).

Next, the work done by the various forces acting on the system during a time step is evaluated by
multiplying the discretized equations of motion, Eq. (4), by the displacement increment to find

AW+ AWE + AW = AW, (12)
This equation is a statement of work balance. The work done by the inertial forces is written as
AV = (up —w) T}, = Moy T = Hr — A, (13)

where Eq. (5) was used and the third equality defines the discretization of the inertial forces Z. . Dis-
cretizations of the inertial forces can be found in various references for rigid bodies (Simo and Wong, 1991;
Simo and Tarnow, 1992), beams (Bauchau et al., 1995; Simo et al., 1995), plates and shells (Simo and
Tarnow, 1994; Bauchau et al., 2002). Proceeding in a similar manner, the work done by the elastic forces is

AWE = (Zf - Ei)TZi =7 =77, (14)

where the second equality defines the discretization of the elastic forces # . Discretizations of the elastic
forces acting on various structural components can be found in the references cited above. The work done
by the externally applied loads is simply A% = (u; — ;)" Z %, and finally, the work done by the constraint
forces is
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AWC = (4; — ) By = (%, — €,

1

) i =0, (15)

where Egs. (6) and (9) were used. This implies the vanishing of the work done by the discretized constraint
forces, as also occurs in the exact solution. It is important to note here that the preservation of the in-
variants ¥ = 0 and % = 0, as implied by Eqgs. (9) and (11), respectively, is closely related to the vanishing of
the work done by the discretized constraint forces, Eq. (15). The discretization of the constraint Jacobian
matrix, Eq. (6), is key to obtaining all three properties simultaneously.

Introducing Egs. (13)—(15) into the work balance statement, Eq. (12), results in

(A5 +770) = (A + 7)) =& — 6= AW, (16)

In the absence of externally applied loads, this statement implies the preservation of the total mechanical
energy of the system across the time step. Since the total mechanical energy is a positive definite function of
the state variables, the preservation of this quantity implies the stability of the proposed numerical scheme
in the presence of constraints. In summary, the proposed algorithm consists of the discretized equation of
motion, Eq. (4), the velocity-displacement relationship, Eq. (5), the definition of the constraint gradient, Eq.
(6), and the constraint equation, Eq. (9).

In the proposed algorithm, the various invariants of the system are not all exactly preserved at the same
instant in time. The governing equation of motion, Eq. (4), and the velocity-displacement relationship, Eq.
(5), are satisfied at the mid-point #,, = (# + 4)/2. The displacement level constraint, Eq. (9), is enforced at #
and ¢, but will clearly not be satisfied at #,,; the same remark holds for the energy preservation statement,
Eq. (16). The velocity level constraint, Eq. (11), is enforced at #,,. Finally, the Lagrange multipliers clearly
are mid-point quantities. This contrasts with most other algorithms that enforce these various conditions at
the same instant in time, typically #.

3.2. Rheonomic constraints

In the case of rheonomic constraints, the discretization B, given by Eq. (6) must be modified to read
G — ;= Bl (w, up, 1) (4 — u5) + @, (5, up, 1). (17)

Here again, the existence of this discretization is guaranteed by the mean value theorem. The scheme de-
fined by Egs. (4) and (5) is augmented with the discretized constraint equations (9). This leads to

0=%; — % = B}, (ur — ;) + ay, = AtBLv,, + ay, = 6, = 0. (18)

Here again, the proposed algorithm implies the satisfaction of the constraints at both displacement and
velocity levels. Finally, the work done the forces of constraint is

AW = (= ) By = [ (1 = 1) By + @[y — 2 (19)
Introducing Eq. (18) then leads to
AW = (G = 6,) by — Yl = — Gy oy (20)

Clearly, the forces associated with rheonomic constraints do work. The work balance statement, Eq. (16)
now becomes

Er=E+ AW — AW, (21)

which is the correct work balance statement for systems involving rheonomic constraints.
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3.3. Non-holonomic constraints

The treatment of non-holonomic constraints within the framework of the proposed algorithm is rather
straightforward. The scheme defined by Eqgs. (4) and (5) is augmented with the following discretized
constraint equations

%m = B;(ﬂhﬂfvt)ym +Qm(u‘

=17

up,t) =0. (22)

In this case, B,, is simply a second order accurate approximation of the constraint Jacobian matrix. The
evaluation of the work done by the non-holonomic constraints closely follows that of the work done by
rheonomic constraints. In fact, it is readily shown that Egs. (20) and (21) also hold for non-holonomic
constraints.

4. The energy decaying algorithm

The proposed algorithm is extended to a numerically dissipative scheme with the following discretization
of the equations of motion

T+ T, + B, = T2 (23)

Z}; + Zf - %[Bg - BhMg = ZhA (24)

The velocity-displacement relationship are approximated as

u —u Uty

A7 7 (25)

ﬂ/‘_ﬂi 1

. Y = —5 [(gf - Qi) - 06(2,- - Qi)}7 (26)

where o is a coefficient that control the amount of numerical dissipation in the algorithm. In these equa-
tions, subscripts () ; indicate the value of a specific quantity at an intermediate time ;; subscripts ) ., and
(+), indicate the “mid-point value” of the corresponding quantity within time intervals [¢;,#] and [4, ],
respectively. The discretized inertial and elastic forces can be derived from their counterparts in the EP
algorithm following the procedure described in (Bauchau, 1998; Bauchau et al., 2003). For simplicity of the
exposition, the case of holonomic constraints will be treated here; extending this work to other constraint
types is straightforward. The discretization B, and B;, will be selected so as to satisfy the following rela-
tionships

3

€ — ﬁ/ = Bg(ﬂf - Ej)a (27)
G~ % =By (u; — u). (28)

Note that these relationships are identical to Eq. (6) but expressed with different sets of subscripts. To be
complete, the scheme defined by Egs. (23)-(28) must be augmented with the discretized constraint equa-
tions, Eq. (9). Introducing these results into Eq. (6) now leads to

0=%—C;+% ~% =B, (u — u) + By (u; — u;) = AtByv, — (By — B;)(u; — wy), (29)

where Eqgs. (25) and (26) were used. This relationship represents the vanishing of the algorithmic mid-point
velocity.
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Next, the work done by the various forces acting on the system during a time step is evaluated from Egs.
(23) and (24) to find the work balance statement, Eq. (12). Discretization of the inertial and elastic forces
can be found in various references for beams (Bauchau et al., 1995; Bauchau and Theron, 1996; Bottasso
et al.,, 2001a,b), plates and shells (Bauchau and Bottasso, 1999; Bauchau et al., 2002). The work they
perform is found to be

AW = A — A+ %CIZ (30)
and
AWE :Wf—%+%cm, (31)

respectively, where ¢ and c®? are positive constants. The work done by the externally applied loads is

simply AW = (u; — ul ) Z2 + 3(u; — ) Z}, and, in view of Eqgs. (27), (28) and (9), the work done by the
constraint forces vanishes

A€ = |ty — ) By — (w, — ) (By = B)| 2 = | (€ = 6)" + (6, - 6] 2, = 0. (32)
Introducing Egs. (30)—(32) into the work balance statement, Eq. (12), results in
Er— & =AW — %cz, (33)

where ¢? = ¢ + ¢F2. In the absence of externally applied loads, this statement implies the decay of the total
mechanical energy of the system across the time step and the stability of the proposed numerical scheme in
the presence of constraints. In summary, the proposed algorithm consists of the discretized equations of
motion, Egs. (23) and (24), the velocity-displacement relationship, Egs. (25) and (26), the definition of the
constraint gradients, Egs. (27) and (28), and the constraint equation, Eq. (9).

5. Relationship with the GGL stabilization method

Gear et al. (1985) proposed a constraint stabilization technique, called stabilized index-2 or GGL
method, based on the reduction of the governing equations from index-3 to index-2 DAEs. For simplicity
of the exposition, the case of scleronomic, holonomic constraints will be presented. The equations of
motion are written in the following form for the force equilibrium equations

T (u,0,0) + F"(u) + Bu)i = F*, (34)
the velocity-displacement relationships,

i—v+Bup=0, (35)
and the constraint equations enforced at both displacement and velocity levels

C(u) =0; B(u)p=0. (36)

Gear et al. (1985) have shown that the system of Egs. (34)-(36) forms a set of index-2 DAEs and its solution
is identical to that of the system of index-3 DAEs formed by Eqgs. (1) and (3). Furthermore, u = 0 is an
invariant for the exact solution. This result is easily understood: the Lagrange multipliers u are used to
enforce the velocity level constraints, Bv = 0. However, in the exact solution, velocity level constraints are
implied by displacement level constraints, and hence, the corresponding Lagrange multipliers vanish since
they enforce redundant constraints. In the numerical world however, the satisfaction of displacement level
constraints does not automatically imply that of velocity level constraints, and u # 0.
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Consider the following discretization of the index-2 set of DAEs, Eqs. (34)—(36): discretized equilibrium
equation (4), constraint Egs. (9) and (11), and velocity-displacement relationship
Ug

Up — Ug
— B —
At ym + mHm 07 (37)

where B, is defined by Eq. (6). Multiplying this last equation by Bl results in

n S Bt + BBt = 0. (38)
The first term vanishes in view of Egs. (6) and (9), whereas Eq. (11) implies the vanishing of the second
term. Consequently, B&Bm,um =0, where BI B, is positive definite since B,, has full rank. It follows that
r, =0, i.e. the numerical solution shares this invariant with the exact solution.
~ In summary, the index-2 set of DAEs proposed by Gear, Eqs. (34)—(36), discretized by Egs. (4), (37), (9)
and (11), respectively, implies u = 0. However, if u_ = 0, these latter equations are identical to the pro-
posed algorithm defined by Egs. (4) (5), (9) and (11). Hence the proposed scheme can be interpreted as the
discretization of a set of index-2 DAESs that evolves over the invariant manifold x4 = 0. In other words, the
algorithm is “self-stabilized”’. B

In view of Eq. (37), it should be noted that the use of the mid point rule for the velocity-displacement
relationship, Eq. (5), is sufficient to guarantee p,, = 0. However, this choice is clearly not sufficient to
achieve stabilization of the constraints. In the original work of Gear et al. (1985) the GGL scheme was
developed to enable the satisfaction of the velocity constraint at the final time, in the same way that the
position constraint is to be satisfied. Numerical dissipation was used to stabilize the resulting system, and
the additional Lagrange multiplier 4 does not vanish. In the present approach, the velocity constraint is not
imposed at the final time, together with the position constraint, but rather at the midpoint. This key dif-
ference enables achieving constraint stabilization without resorting to numerical dissipation and without
introducing an additional Lagrange multiplier. This seems to suggest that imposing both position and
velocity constraints at the same instant in time over-constrains the system.

6. Numerical examples
6.1. The rigid body

Consider the rigid body depicted in Fig. 1. The position vector of its reference point O is denoted u and
its orientation is determined by an orthonormal basis % := (e}, e,,e3). The position vector of an arbitrary
point P of the rigid body is then x, = u + sie; + sie, + sie;, where s* are the components of the position
vector of point P_with respect to point O, measured in %. The kinetic energy of the rigid body is readily
found as & = % d M*d, where array d stores the degrees of freedom of the system d" = [u",e],e,e;], and

the mass matrix is

Mol Mol Mpl Mgl
Mol Myl Myl Ml
Mol Myl Myl Myl

(39)

I denote the 3 x 3 identity matrix, Moy = [, pdV is the total of the body, where p is the material density and
V' the volume of the body. My = f,, pstdV then defines the first moments of inertia of the body, and
My = [, psis;dV is closely related to the tensor of moments of inertia.
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Fig. 1. Configuration of the rigid body.

The kinematics of the rigid body is defined by the twelve degrees of freedom stored in array d. Clearly,
six constraints must be imposed: three conditions on the normality of vectors e;, &, and e;, and three
additional constraints enforcing their orthogonality. The array of constraints writes

@e — 1)/
ee, - 1)/
e -D/2) (40)

I
|
—

The equations of motion of the system are then M*d + BA = F, where A is an array of six Lagrange
multipliers, F' the array of externally applied forces and B the constraint Jacobian matrix

0O 0 0 0 0 O

_ o ee 0 0 0 & e
B@,&a) = | | & 0 & 0 E? (41)

0 0 e e e O

The discretized equations of motion then become M*(v; — v;)/At + B(€im, €, €3m )Ly = Fry» Where
e = (eu + err)/2; the velocity-displacement relationship (d; — d;)/Ar = (v; + v;)/2, and the constraint
equation, Eq. (9). It is readily verified that BT (€, @sm, &3m ) (d; — d;) = €, — %, as required by condition (6).

A rigid body with the following properties was simulated: My = 1.8 kg, (Mo, Mo, My) =
(018, —072,054) kgm, (M117M227M33) = (02707,04) kgmz, and (Mlz,M13,M23) = (—0012,0015,
—0.023) kgm?. The rigid body had an initial velocity vj =[5,0,0] m/s and initial angular velocity
@y = [0,4,0] rad/s. The configuration of the rigid body was computed for 5 s period using the proposed EP
algorithm with a constant time step Ar = 0.0125 s. Fig. 2 shows the components of vectors ¢; and e,
whereas Fig. 3 depicts the angular velocity vector and the first three Lagrange multipliers, 41, 42, and ;3.
The displacement and velocity level constraints for each of the six constraints were satisfied to machine
accuracy, as was the energy preservation condition. These results illustrate the performance obtained using
the EP algorithm: stable predictions are obtained without resorting to a dissipative algorithm; none of the
computed quantities exhibit oscillations of a numerical origin. Next, the ED scheme was used for this
problem and its predictions were in excellent agreement with those of the EP algorithm. Fig. 4 shows the
results of a convergence study performed for both EP and ED schemes. The displacement, velocity, and
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Fig. 2. Time history of the orientation vector ¢, (top figure) and e, (bottom figure). Components along 7, (O), 7, () and 73 (A).

mid-point Lagrange multiplier components all exhibit quadratic or cubic convergence rates for the EP and
ED algorithms, respectively.

6.2. The rigid bodyluniversal joint system

The second example deal with a rigid body attached to the ground by means of a universal joint, as
depicted in Fig. 5. The upper component of a universal joint is connected to an inertial point O and rotates
at a constant angular velocity Q with respect to an inertial basis % := (i,1,,73) such that
d,(t) = cos(Q¢)7; — sin(Q¢)73. The lower component of the universal joint connects at point O’ to a rigid
body with an attached orthonormal basis 4 := (e;, e,,e;). Points O and O’ are coincident. The kinematics
of the universal joint impose the orthogonality of unit vectors d; and e, i.e. the rheonomic holonomic
constraint ¢ = e1d, (¢) = 0. The position vector of the center of mass of the rigid body with respect to point
O’ is denoted 5. Gravity acts on the system as indicated in Fig. 5.

The equations of motion of the system are readily found as (Rh*) + 1ésd, + megn = 0, where R is the
rotation tensor from .# to % measured in .#, h* = I*w"* are the components of the angular momentum
vector in the material system %, 4 is the Lagrange multiplier, m, the total mass of the body, and g the
acceleration of gravity vector. The tensor of moments of inertia of the rigid body with respect to point O’
measured in 4 is denoted 7*, and the angular velocity vector in the material system is w*.

Although the existence of a discretization of the constraint gradient array that satisfies Eq. (6) is
guaranteed by the mean value theorem, it is not always easy to find an analytical expression for By. In
practice, it can be constructed in the following manner
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Fig. 4. Convergence of the orientation vector e; (O), angular velocity vector ((J), and mid-point Lagrange multiplier ;; (A) for the
rigid body problem. EP algorithm: solid line; ED algorithm: dashed line.
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Note: points O and
O’ are coincident.

€

e, c.m. Rigid
) body

Fig. 5. Configuration of the rigid body connected to a universal joint.

C—C =dey—des=d, <1 + g)éam —d (1 _ g)ésm’ (42)

where r are the Rodrigues parameter (see Appendix A) of the incremental rotation tensor from R; to R;, and
em = (€31 +@3)/2. It then follows that

Cr — Ci = r"esmd iy + T (dir — di), (43)

where d\, = (dy; + d ;) /2. Comparing this relationship with Eq. (6), it is clear that B, = &nd n; the second
term corresponds to the discretization of d%/d¢, since this is a time dependent constraint. Following a
similar path, the change in the potential of the gravity load, ¥~ = mog'#n, can be expressed as

Vo=V =mog' (n, —n,) = mog'Fn_ = —r'mogn_, (44)

where Egs. (A.2) and (A.3) were used. These developments suggest the following discretization of the
equations of motion

Rehy — Rily

At + lmé3mdlm + mogﬂm = O> (45)

supplemented by velocity-displacement relationship: @}, = R'r/At. As discussed in Section 3.2, rheonomic
constraints can perform work, see Eq. (20). The work done by the driving torque at the universal joint is
AW‘C = —)nmégm(alf — 3“).

A rigid body with the following properties was simulated: total mass, my = 1.8 kg, center of mass lo-
cation, 7 =(0.1,-0.4,0.3) m, moments of inertia, (I}},15,/3) = (1.1,0.6,0.9) kgm?, and
(Ity, It I3;) = (0.012,-0.015,0.023) kgm?. The prescribed angular velocity is Q = 1.0 rad/s and g = 9.81
m/s?. The system was modeled for a complete revolution of the universal joint using the EP scheme; 400
equal time step were used.

Fig. 6 shows the orientation and angular velocity of the rigid body as a function of the non-dimensional
time © = Q¢/2n. The orientation of the body is represented by the components of the conformal rotation
vector, and the sudden changes in their values correspond to rescaling operations that circumvent the
singularities associated with the conformal rotation vector (Bauchau and Trainelli, in press). Note that
the angular velocity of the body rapidly increases from its initial unit value under the combined effects of
the driving torque and gravity loading. Fig. 7 depicts the magnitudes of the Lagrange multiplier and driving
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Fig. 6. Time history of the rigid body conformal rotation vector (top figure) and angular velocity vector (bottom figure). Components
along 7; (O), 7; (O) and 75 ().

torque. Here again, the computation is stable and all predicted quantities present smooth time histories
although the algorithm features no numerical dissipation.

6.3. The wind turbine system

The last example deals the two-bladed wind turbine mounted on an elastic tower, as depicted in Fig. §
that also details the connections between the various components of the system. The physical properties are
described by Stol et al. (1999). The elastic tower, modeled with four cubic beam element, is connected at
point T to the bed plate, modeled with a single cubic beam element, by means of a revolute joint (labeled
Rvj yaw in the figure). A revolute joint (Rvj tilt) then connects the bed plate to the nacelle, modeled with a
single cubic beam element, at point S. In turn, the shaft, modeled with a single cubic beam element, is
connected to the nacelle through a revolute joint (Rvj shaft). Finally, a last revolute joint (Rvj teeter) at-
taches the hub and blades assembly to the shaft at point E. The hub is modeled as a rigid body, while each
of the two blades are modeled with six cubic beam elements, respectively. The model involved 360 degrees
of freedom associated with the 60 nodes defining the beam elements (6 degrees of freedom per node, three
displacements and three rotations). Details about the formulation of the beam element can be found in
(Bauchau, 1998; Bauchau et al., 2003). In addition, 12 Lagrange multipliers were associated with the re-
volute joints (three Lagrange multipliers for each of the four revolute joints). Finally, three constraints were
used to connect the hub to each of the two blades. The complete system involved 378 degrees of freedom, of
which 18 were Lagrange multipliers.
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Fig. 7. Time history of the Lagrange multiplier (top figure) and driving torque (bottom figure).

The angular velocity of the rotor was prescribed to 2 = 6 rad/s, and two concentrated loads were applied
at the tip of the blades. The time history of these loads was

P(t) = {g’o(l — cosmt) /2 §§22,, “6)

— Rvj
P(t n
() o/t’“ N q

S
Bed - Nacelle E
plate "pvi  Shaft K
TTRVj  shaft Rvj
Yaw teeter
Blade 2
Hub
H
P(t) Tower i
R Blade 1
TEFIEE
= [ O Revolute joints
I Beam elements

Fig. 8. The wind turbine problem.
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Fig. 9. Time history of the mid-span shear force F; (top figure) and bending moment M; (bottom figure) in the blade. ED scheme: solid
line; EP scheme: dashed line.

where Py = 1 kN. The dynamic response of the system was computed for 10 revolutions of the rotor using a
constant time step Az = 5 x 107 s. Due to the high centrifugal stiffening of the blades associated with the
spinning of the rotor, the system is stiff. At first, the EP scheme was used to integrate the equations of
motion. The predicted blade mid-span shear force and bending moment are shown in Fig. 9. This integrator
is unable to cope with the high stiffness of the system and violent oscillations are observed at each time step.
The predictions of the ED schemes are also depicted in the same figure and show that the dissipative nature
of the scheme eliminates this problem. Note that the peak-to-peak value of the shear forces was 60 times
larger for the EP scheme as compared with the ED scheme: clearly, the predictions of the EP schemes are
completely obscured by numerical noise. The ED schemes eliminates these spurious oscillations and reveals
the true peak-to-peak value of the shear forces. A similar behavior is observed for the mid-span bending
moments. Note that the predictions of the EP scheme would be of little value in a design setting: indeed, it
cannot predict stress levels to a reasonable level of accuracy.

This last example demonstrate that numerically dissipative schemes are necessary for dealing with
physically stiff system. On the other hand, the previous examples have shown that constraints can be ac-
curately enforced without resorting to numerical dissipation.

7. Conclusions

In present work, a new algorithm was developed for the enforcement of constraints within the frame-
work of nonlinear, flexible multibody system modeled with the finite element approach. Constraints are
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enforced through a Lagrange multiplier technique. The proposed algorithm exactly satisfies the constraints
at the displacement and velocity levels, and furthermore, it achieves nonlinear unconditional stability by
imposing the vanishing of the work done by the constraint forces. These three desirable features are inti-
mately interrelated and stem from a specific discretization of the constraint Jacobian matrix whose exis-
tence is a direct consequence of the mean value theorem. Identical convergence rates are observed for the
displacements, velocities, and Lagrange multipliers.

The algorithm accommodates scleronomic and rheonomic holonomic constraints, as well as non-holo-
nomic constraints. Both EP and ED discretizations were presented for the constraint forces. It was shown
that the proposed algorithm is closely related to the stabilized index-2 or GGL method. However, the
proposed approach does not require additional Lagrange multipliers and does not rely on numerical dis-
sipation for constraint stabilization. Unlike the classical GGL algorithm that enforces both position and
velocity constraints at the final time, the present approach enforces the velocity constraint at the mid-point
and the position constraint at the end point in time. This seems to suggest that imposing both position and
velocity constraints at the same instant in time over-constrains the system.

The desirable characteristics of the algorithm for handling the constraints are obtained without resorting
to numerically dissipative algorithms. If high frequencies are present in the system, i.e. the system is
physically stiff, ED schemes are necessary to cope with the spurious high frequency oscillations observed
when using EP algorithms.

Appendix A. Rodrigues parameters

A common representation of finite rotations (Kane and Levinson, 1985; Bauchau and Trainelli, in press)
is in terms of Rodrigues parameters, r = 2ntan ¢ /2, where ¢ is the magnitude of the finite rotation and 7
the unit vector representing the axis of rotation. The finite rotation tensor R is expressed as

R(r) :I+rof+%o?f, (A.1)

where 7y = cos? ¢/2 = 1/[1 + (¥'7)/4]. The following multiplicative decomposition of the rotation tensor is
important

e (119 (221, a2

and furthermore

= (- 2)("2), "

where 7 is the identity tensor.
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