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Abstract

A new algorithm is developed for the enforcement of constraints within the framework of nonlinear, flexible multi-

body system modeled with the finite element approach. The proposed algorithm exactly satisfies the constraints at the

displacement and velocity levels, and furthermore, it achieves nonlinear unconditional stability by imposing the vani-

shing of the work done by the constraint forces when combined with specific discretizations of the inertial and elastic

forces. Identical convergence rates are observed for the displacements, velocities, and Lagrange multipliers. The pro-

posed algorithm is closely related to the stabilized index-2 or GGL method, although no additional multipliers are

introduced in the present approach. These desirable characteristics are obtained without resorting to numerically

dissipative algorithms. If high frequencies are present in the system, i.e. the system is physically stiff, dissipative schemes

become necessary; the proposed algorithm is extended to deal with this situation.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Multibody dynamics analysis was originally developed as a tool for modeling mechanisms with simple

tree-like topologies composed of rigid bodies, but has considerably evolved to the point where it can handle
nonlinear flexible systems with arbitrary topologies (Nikravesh, 1988; Amirouche, 1992). Multibody sys-

tems can be viewed as a collection of rigid or flexible bodies connected by joints that impose constraints on

the relative motion of the various bodies of the system. The unavoidable presence of these joints is a

distinguishing feature of multibody systems. Most joints used for practical applications can be modeled in

terms of the so called lower pairs (Angeles, 1982): the revolute, prismatic, screw, cylindrical, planar and

spherical joints. In many cases however, joints with specialized kinematic conditions must be developed.

Although it is possible to work with a minimum set of coordinates to represent the system, it is often more

convenient to use a redundant set subjected to constraints. Typically, the constraints are then enforced via
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the Lagrange multiplier technique, and the resulting equations of motion then form a set of differential-

algebraic equations (DAEs). A good review of the many methods that have been developed for dealing with

constrained multibody systems can be found in (Schiehlen, 1990). Four broad classes of method will be

reviewed in the following paragraphs.
A first approach to the analysis of constrained multibody systems is to eliminate the redundant degrees

of freedom and work with a minimum set. Typically, the equations of motion are projected onto the

tangent to the constraint manifold to determine the independent and dependent degrees of freedom. Many

techniques find their basis in this decomposition approach: the zero eigenvalue method (Walton and

Steeves, 1969), the coordinate partitioning method (LU factorization; Wehage and Haug, 1982), the sin-

gular decomposition method (Singh and Likins, 1985; Mani et al., 1985), the QR or householder decom-

position (Kim and Vanderploeg, 1986; Amirouche et al., 1988), and the Gramm–Schmidt orthogonalization

(Liang and Lance, 1987; Agrawal and Saigal, 1989). It has been shown by Kurdila et al. (1990) and
Papastavridis (1990) that all of these methods can be unified within the framework of Maggi�s equation.

Unfortunately, these methods are not a practical approach when dealing with finite element formulations

because they destroy the banded nature of the governing equations.

Another approach is to work with the original set of DAEs. Gear and Petzold (1984), Lotstedt and

Petzold (1986a,b) and Brenan et al. (1989) have given a formal definition of the index of a system of DAEs.

The governing equations for mechanical systems with holonomic constraints are index-3 DAEs; typically,

higher indices result in more arduous solution processes. Gear et al. (1985) proposed a method, called the

stabilized index-2 or GGL method, that reduces the index from 3 to 2 and showed that variable-order,
variable-step backward difference methods converge for the resulting index-2 problem. Later, Gear (1988)

developed an approach to further reduce the problem to index-1 DAEs. Of course, these approaches re-

quire additional computational cost in the form of additional Lagrange multipliers. Another approach to

index reduction is the embedded projection method (Borri et al., in press) that can be used to systematically

reduce the index from 3 to 1. Furthermore, it splits the original DAE problem into its algebraic and dif-

ferential parts.

The third approach also involves index reduction techniques, as should be expected in view of the

numerical difficulties associated with index-3 DAEs. However, in this case, index reduction is achieved
by enforcing a time derivative of the constraint. Let C ¼ 0, _CC ¼ 0 and €CC ¼ 0 represent the displacement,

velocity and acceleration level constraints, respectively. The system formed by the equations of motion

and the acceleration level constraints then forms a set of index-1 DEAs with invariants. Indeed, for the

exact solution, C ¼ 0 and _CC ¼ 0 represent two invariants of the system. Unfortunately, an approximate

numerical solution will not evolve on the invariant manifolds, resulting in C 6¼ 0 and _CC 6¼ 0. Baum-

garte�s stabilization method (Baumgarte, 1972) was introduced to compensate for this drift. However,

this approach never exactly satisfies the constraints, and relies on problem dependent parameters for

adequate performance. Park and Chiou (1988) and Park et al. (1988) presented a procedure that
achieves stabilization based on a penalty form of the constraint equations. Finally, Bayo et al. (1988)

and Bayo and Ledesma (1996) proposed an augmented Lagrangian approach and a mass-orthogonal

projection was used to satisfy the displacement, velocity, and acceleration level constraints to machine

accuracy.

The last set of methods attacks the index-3 DAEs without prior index reduction. Orlandea et al. (1977)

used numerically dissipative time integrators specifically designed for stiff problems to directly integrate

these equations. Within the framework of finite element formulations for multibody dynamics (G�eeradin

and Cardona, 2000), the governing equations of motion form a large set of sparse equations for the dis-
placement variables and Lagrange multipliers, i.e. a set of index-3 DAEs. Cardona and G�eeradin (1989)

showed that the classical Newmark (1959) trapezoidal rule is unconditionally unstable for linear systems in

the presence of constraints. However, the use of dissipative algorithms such as HHT (Hilber et al., 1977)
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resulted stable behavior, even for nonlinear systems. Further work by Farhat et al. shows that both HHT

and generalized-a (Chung and Hulbert, 1993) methods achieve stability for a class of constrained hybrid

formulations. In these approaches, stabilization of the integration process is inherently associated with the

dissipative nature of the algorithms.
In recent years, considerable work has been done with energy preserving (EP) schemes and energy de-

caying (ED) schemes. Whereas the classical schemes (Newmark, HHT, or generalized-a) used in finite ele-

ment procedures come with proofs of unconditional stability for linear systems, EP and ED schemes

feature unconditional nonlinear stability. For EP schemes, discretizations of the inertial and elastic forces in

rigid bodies (Simo and Wong, 1991; Simo and Tarnow, 1992), beams (Bauchau et al., 1995; Simo et al.,

1995), plates, and shells (Simo and Tarnow, 1994) have been developed that preserve the total mechanical

energy of the system at the discrete solution level. In view of the positive definite nature of the total me-

chanical energy, this discrete conservation law guarantees the stability of the computational scheme for
nonlinear problems. Puso (2002) developed an energy conserving scheme for rigid–flexible body dynamics

with constraints between the rigid bodies; this scheme achieves nonlinear unconditional stability for a

specific type of constraint. However, while nonlinear unconditional stability is the first step towards the

development of robust algorithms, it does not guarantee, per se, satisfactory performance of the scheme

(Bauchau et al., 2003).

For nonlinear flexible multibody systems, EP schemes perform rather poorly when applied to complex

simulations of engineering interest (Bauchau et al., 1995). The time histories of internal forces and velocities

often present a very significant high frequency content that will hinder the solution convergence process.
Furthermore, this high frequency response is an artifact of the spatial discretization process and contains

no information about the physical behavior of the system. Hence, the presence of high frequency numerical

dissipation is an indispensable feature of robust time integrators for multibody systems. This prompted the

development of ED schemes for beam (Bottasso and Borri, 1997; Bauchau, 1998), shells (Bauchau et al.,

2002) and multibody systems (Bottasso et al., 2001a,b).

In present work, a new algorithm is developed for the enforcement of constraints within the framework

of nonlinear, flexible multibody system modeled with the finite element approach (G�eeradin and Cardona,

2000), where constraints are typically enforced through the Lagrange multiplier technique. The stiffness of
the resulting equations stems from two sources: the ‘‘infinite’’ frequencies associated with the massless

Lagrange multipliers, and the very high frequencies associated with the elastic components (beam, plates, or

shells) of the system. It must be noted that the former stiffness is due to the formulation: Lagrange mul-

tiplier could be, in principle, eliminated by using a minimum set of coordinates, whereas the latter is in-

herent to the physical nature of the system. The proposed algorithm exactly satisfies the constraints at the

displacement and velocity levels, and furthermore, it achieves nonlinear unconditional stability by imposing

the vanishing of the work done by the constraint forces. The algorithm is second order accurate for dis-

placements, velocities, and Lagrange multipliers. It is also shown that the proposed algorithm is closely
related to the stabilized index-2 or GGL method (Gear et al., 1985), although no additional unknowns are

introduced in the present approach. These desirable characteristics are obtained without resorting to nu-

merically dissipative algorithms. Since the ‘‘infinite’’ frequencies associated with the Lagrange multipliers

are indeed an artifact of the formulation rather than a physical characteristic of the system, it does not seem

appropriate to use dissipative algorithms to solve the numerical problems resulting from enforcement of the

constraints. If high frequencies are present, i.e. the system is physically stiff, ED schemes become necessary;

the proposed algorithm will be extended to deal with this situation.

Section 2 defines the notation used to describe constrained dynamical problems. The EP version of the
proposed algorithm is introduced in Section 3 for scleronomic, rheonomic, and non-holonomic constraints,

and its ED version is then presented in Section 4. The relationship of the proposed algorithm with the GGL

method is discussed in Section 5, and finally, numerical examples are presented in Section 6.
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2. Constrained dynamical problems and notations

The semi discrete equations of motion for constrained multibody problems are written in a generic

manner as

FIðu; _uu; €uuÞ þFEðuÞ þ Bðu; tÞk ¼ FA; ð1Þ

where the three terms on the left hand side represents the inertial, elastic, constraint forces, respectively,
whereas the externally applied loads appear on the right hand side. Array u stores the degrees of freedom of

the system, k is the array of Lagrange multipliers, B the constraint Jacobian matrix, and t denotes time. For

Lagrangian systems, the inertial and elastic forces can be derived from the kinetic and strain energy

functions, denoted Kðu; _uuÞ and VðuÞ, respectively. It will be assumed that, in the absence of externally

applied loads, the system is conservative; this implies the conservation of the total mechanical energy of the

system, i.e. E ¼ KþV is an invariant of the system. The constraint forces result from the enforcement of

m constraint conditions via the Lagrange multiplier technique. Non-holonomic constraints are assumed to

be linear with respect to velocities and are written in the following form

BTðu; tÞ _uuþ aðu; tÞ ¼ 0; ð2Þ

where the constraint Jacobian matrix is of rank m in order to avoid redundant constraints on the system. If

these equations can be integrated to the form Cðu; tÞ ¼ 0, the constraints are said to be holonomic and

Cðu; tÞ ¼ 0: ð3Þ

In this case, the system must evolve on the constraint manifold, i.e. Cðu; tÞ ¼ 0 is an invariant of the system,

and _CC ¼ 0, €CC ¼ 0, etc. clearly are additional invariants. In the presence of holonomic constraints, the

equations of motion consist of Eqs. (1) and (3) and form a system of index-3 DAEs (Gear and Petzold,

1984). For non-holonomic constraints Eqs. (1) and (2) form a system of index-2 DAEs. Of course, both
holonomic and non-holonomic constraints could appear simultaneously, resulting in a system of index-3

DAEs.

3. Proposed algorithm

The proposed self-stabilized method starts with the following discretization of the equations of motion,

Eq. (1), at the mid-point of a typical time step

FI
m þFE

m þ Bmkm ¼ FA
m: ð4Þ

The velocity-displacement relationship are approximated as

uf � ui

Dt
¼ vf þ vi

2
; ð5Þ

where v ¼ _uu is the velocity array. The initial and final times for the time step are denoted ti and tf , res-

pectively, and subscripts ð�Þi and ð�Þf will be used to indicate the value of a specific quantity at times ti and tf ,
respectively; Dt ¼ tf � ti. The subscript ð�Þm indicates the ‘‘mid-point value’’ of the corresponding quantity.

At the heart of the proposed algorithm is the selection of these mid-point values that will be guided by the

requirement of preservation of system invariants.

For simplicity of the exposition, the case of holonomic constraints will be treated first, and furthermore,
constraints will be assumed to be scleronomic, i.e. C ¼ CðuÞ. Next, the case rheonomic and non-holonomic

constraints will be treated.
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3.1. Scleronomic constraints

The discretization Bm will be selected so as to satisfy the following relationship

Cf � Ci ¼ BT
mðuf � uiÞ: ð6Þ

The existence of this discretization is guaranteed by the mean value theorem (Hildebrand, 1976). Indeed,

considering CðuðtÞÞ to be an implicit function of time and letting uðtÞ ¼ ui þ ðuf � uiÞðt � tiÞ=ðtf � tiÞ over
the time step, this theorem guarantees the existence of a time tf 2 ½ti; tf 
 such that

CðuðtfÞÞ ¼ CðuðtiÞÞ þ
oC

ou

����
tf

du
dt

ðtf � tiÞ ¼ CðuðtiÞÞ þ
oC

ou

����
tf

ðuf � uiÞ: ð7Þ

Clearly, the desired discretization is now

BT
m ¼ oC

ou

����
tf

: ð8Þ

To be complete, the scheme defined by Eqs. (4) and (5) must be augmented with the following discretized

constraint equations

Cf ¼ 0: ð9Þ
Since the same algorithm is applied at each time step, Eq. (9) also implies Ci ¼ 0. Introducing these results

into Eq. (6) now leads to

0 ¼ Cf � Ci ¼ BT
mðuf � uiÞ ¼ DtBT

m

vf þ vi

2
; ð10Þ

where Eq. (5) was used. The mid-point velocity is denoted vm ¼ ðvf þ viÞ=2, and hence

_CCm ¼ BT
mvm ¼ 0: ð11Þ

This result illustrates a fundamental property of the proposed algorithm: two invariants of the system are

exactly satisfied, C ¼ 0, Eq. (9), and _CC ¼ 0, Eq. (11). In other words, the proposed algorithm implies the

satisfaction of the constraints at both displacement and velocity levels. The key to achieving the preser-
vation of both invariants, is the proper selection of Bm, as defined in Eq. (6).

Next, the work done by the various forces acting on the system during a time step is evaluated by

multiplying the discretized equations of motion, Eq. (4), by the displacement increment to find

DWI þ DWE þ DWC ¼ DWA: ð12Þ
This equation is a statement of work balance. The work done by the inertial forces is written as

DWI ¼ ðuf � uiÞ
T
FI

m ¼ DtvT
mF

I
m ¼ Kf �Ki; ð13Þ

where Eq. (5) was used and the third equality defines the discretization of the inertial forces FI
m. Dis-

cretizations of the inertial forces can be found in various references for rigid bodies (Simo and Wong, 1991;

Simo and Tarnow, 1992), beams (Bauchau et al., 1995; Simo et al., 1995), plates and shells (Simo and

Tarnow, 1994; Bauchau et al., 2002). Proceeding in a similar manner, the work done by the elastic forces is

DWE ¼ ðuf � uiÞ
T
FE

m ¼ Vf �Vi; ð14Þ

where the second equality defines the discretization of the elastic forces FE
m. Discretizations of the elastic

forces acting on various structural components can be found in the references cited above. The work done

by the externally applied loads is simply DWA ¼ ðuf � uiÞ
T
FA

m, and finally, the work done by the constraint
forces is
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DWC ¼ ðuf � uiÞ
TBmkm ¼ ðCf � CiÞ

Tkm ¼ 0; ð15Þ

where Eqs. (6) and (9) were used. This implies the vanishing of the work done by the discretized constraint

forces, as also occurs in the exact solution. It is important to note here that the preservation of the in-
variants C ¼ 0 and _CC ¼ 0, as implied by Eqs. (9) and (11), respectively, is closely related to the vanishing of

the work done by the discretized constraint forces, Eq. (15). The discretization of the constraint Jacobian

matrix, Eq. (6), is key to obtaining all three properties simultaneously.

Introducing Eqs. (13)–(15) into the work balance statement, Eq. (12), results in

ðKf þVfÞ � ðKi þViÞ ¼ Ef � Ei ¼ DWA: ð16Þ

In the absence of externally applied loads, this statement implies the preservation of the total mechanical
energy of the system across the time step. Since the total mechanical energy is a positive definite function of

the state variables, the preservation of this quantity implies the stability of the proposed numerical scheme

in the presence of constraints. In summary, the proposed algorithm consists of the discretized equation of

motion, Eq. (4), the velocity-displacement relationship, Eq. (5), the definition of the constraint gradient, Eq.

(6), and the constraint equation, Eq. (9).

In the proposed algorithm, the various invariants of the system are not all exactly preserved at the same

instant in time. The governing equation of motion, Eq. (4), and the velocity-displacement relationship, Eq.

(5), are satisfied at the mid-point tm ¼ ðtf þ tiÞ=2. The displacement level constraint, Eq. (9), is enforced at tf
and ti, but will clearly not be satisfied at tm; the same remark holds for the energy preservation statement,

Eq. (16). The velocity level constraint, Eq. (11), is enforced at tm. Finally, the Lagrange multipliers clearly

are mid-point quantities. This contrasts with most other algorithms that enforce these various conditions at

the same instant in time, typically tf .

3.2. Rheonomic constraints

In the case of rheonomic constraints, the discretization Bm given by Eq. (6) must be modified to read

Cf � Ci ¼ BT
mðui; uf ; tÞðuf � uiÞ þ amðui; uf ; tÞ: ð17Þ

Here again, the existence of this discretization is guaranteed by the mean value theorem. The scheme de-

fined by Eqs. (4) and (5) is augmented with the discretized constraint equations (9). This leads to

0 ¼ Cf � Ci ¼ BT
mðuf � uiÞ þ am ¼ DtBT

mvm þ am ¼ _CCm ¼ 0: ð18Þ

Here again, the proposed algorithm implies the satisfaction of the constraints at both displacement and

velocity levels. Finally, the work done the forces of constraint is

DWC ¼ ðuf � uiÞ
TBmkm ¼ ðuf

h
� uiÞ

TBm þ aT
m

i
km � aT

mkm: ð19Þ

Introducing Eq. (18) then leads to

DWC ¼ ðCf � CiÞ
Tkm � aT

mkm ¼ �aT
mkm: ð20Þ

Clearly, the forces associated with rheonomic constraints do work. The work balance statement, Eq. (16)

now becomes

Ef ¼ Ei þ DWA � DWC; ð21Þ

which is the correct work balance statement for systems involving rheonomic constraints.
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3.3. Non-holonomic constraints

The treatment of non-holonomic constraints within the framework of the proposed algorithm is rather

straightforward. The scheme defined by Eqs. (4) and (5) is augmented with the following discretized
constraint equations

Cm ¼ BT
mðui; uf ; tÞvm þ amðui; uf ; tÞ ¼ 0: ð22Þ

In this case, Bm is simply a second order accurate approximation of the constraint Jacobian matrix. The

evaluation of the work done by the non-holonomic constraints closely follows that of the work done by

rheonomic constraints. In fact, it is readily shown that Eqs. (20) and (21) also hold for non-holonomic

constraints.

4. The energy decaying algorithm

The proposed algorithm is extended to a numerically dissipative scheme with the following discretization
of the equations of motion

FI
g þFE

g þ Bgkg ¼ FA
g ; ð23Þ

FI
h þFE

h � 1
3
½Bg � Bh
kg ¼ FA

h : ð24Þ

The velocity-displacement relationship are approximated as

uf � ui

Dt
¼

vf þ vj
2

; ð25Þ

3
uj � ui

Dt
¼ � 1

2
ðvf

�
� viÞ � aðvj � viÞ

�
; ð26Þ

where a is a coefficient that control the amount of numerical dissipation in the algorithm. In these equa-

tions, subscripts ð�Þj indicate the value of a specific quantity at an intermediate time tj; subscripts ð�Þg and

ð�Þh indicate the ‘‘mid-point value’’ of the corresponding quantity within time intervals ½tj; tf 
 and ½ti; tj
,
respectively. The discretized inertial and elastic forces can be derived from their counterparts in the EP

algorithm following the procedure described in (Bauchau, 1998; Bauchau et al., 2003). For simplicity of the

exposition, the case of holonomic constraints will be treated here; extending this work to other constraint
types is straightforward. The discretization Bg and Bh will be selected so as to satisfy the following rela-

tionships

Cf � Cj ¼ BT
g ðuf � ujÞ; ð27Þ

Cj � Ci ¼ BT
h ðuj � uiÞ: ð28Þ

Note that these relationships are identical to Eq. (6) but expressed with different sets of subscripts. To be

complete, the scheme defined by Eqs. (23)–(28) must be augmented with the discretized constraint equa-

tions, Eq. (9). Introducing these results into Eq. (6) now leads to

0 ¼ Cf � Cj þ Cj � Ci ¼ BT
g ðuf � ujÞ þ BT

h ðuj � uiÞ ¼ DtBT
g vg � ðBT

g � BT
h Þðuj � uiÞ; ð29Þ

where Eqs. (25) and (26) were used. This relationship represents the vanishing of the algorithmic mid-point
velocity.
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Next, the work done by the various forces acting on the system during a time step is evaluated from Eqs.

(23) and (24) to find the work balance statement, Eq. (12). Discretization of the inertial and elastic forces

can be found in various references for beams (Bauchau et al., 1995; Bauchau and Theron, 1996; Bottasso

et al., 2001a,b), plates and shells (Bauchau and Bottasso, 1999; Bauchau et al., 2002). The work they
perform is found to be

DWI ¼ Kf �Ki þ
a
2
cI2 ð30Þ

and

DWE ¼ Vf �Vi þ
a
2
cE2; ð31Þ

respectively, where cI2 and cE2 are positive constants. The work done by the externally applied loads is

simply DWA ¼ ðuf � uT
i ÞFA

g þ 3ðuj � uiÞFA
h , and, in view of Eqs. (27), (28) and (9), the work done by the

constraint forces vanishes

DWC ¼ ðuf

h
� uiÞ

TBg � ðuj � uiÞ
TðBg � BhÞ

i
kg ¼ ðCf

h
� CjÞ

T þ ðCj � CiÞ
T
i
kg ¼ 0: ð32Þ

Introducing Eqs. (30)–(32) into the work balance statement, Eq. (12), results in

Ef � Ei ¼ DWA � a
2
c2; ð33Þ

where c2 ¼ cI2 þ cE2. In the absence of externally applied loads, this statement implies the decay of the total

mechanical energy of the system across the time step and the stability of the proposed numerical scheme in

the presence of constraints. In summary, the proposed algorithm consists of the discretized equations of

motion, Eqs. (23) and (24), the velocity-displacement relationship, Eqs. (25) and (26), the definition of the

constraint gradients, Eqs. (27) and (28), and the constraint equation, Eq. (9).

5. Relationship with the GGL stabilization method

Gear et al. (1985) proposed a constraint stabilization technique, called stabilized index-2 or GGL

method, based on the reduction of the governing equations from index-3 to index-2 DAEs. For simplicity

of the exposition, the case of scleronomic, holonomic constraints will be presented. The equations of

motion are written in the following form for the force equilibrium equations

FIðu; v; _vvÞ þFEðuÞ þ BðuÞk ¼ FA; ð34Þ
the velocity-displacement relationships,

_uu� vþ BðuÞl ¼ 0; ð35Þ

and the constraint equations enforced at both displacement and velocity levels

CðuÞ ¼ 0; BðuÞv ¼ 0: ð36Þ
Gear et al. (1985) have shown that the system of Eqs. (34)–(36) forms a set of index-2 DAEs and its solution

is identical to that of the system of index-3 DAEs formed by Eqs. (1) and (3). Furthermore, l ¼ 0 is an

invariant for the exact solution. This result is easily understood: the Lagrange multipliers l are used to

enforce the velocity level constraints, Bv ¼ 0. However, in the exact solution, velocity level constraints are

implied by displacement level constraints, and hence, the corresponding Lagrange multipliers vanish since
they enforce redundant constraints. In the numerical world however, the satisfaction of displacement level

constraints does not automatically imply that of velocity level constraints, and l 6¼ 0.
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Consider the following discretization of the index-2 set of DAEs, Eqs. (34)–(36): discretized equilibrium

equation (4), constraint Eqs. (9) and (11), and velocity-displacement relationship

uf � uf

Dt
� vm þ Bml

m
¼ 0; ð37Þ

where Bm is defined by Eq. (6). Multiplying this last equation by BT
m results in

BT
m

uf � uf

Dt
� BT

mvm þ BT
mBml

m
¼ 0: ð38Þ

The first term vanishes in view of Eqs. (6) and (9), whereas Eq. (11) implies the vanishing of the second

term. Consequently, BT
mBml

m
¼ 0, where BT

mBm is positive definite since Bm has full rank. It follows that
l

m
¼ 0, i.e. the numerical solution shares this invariant with the exact solution.

In summary, the index-2 set of DAEs proposed by Gear, Eqs. (34)–(36), discretized by Eqs. (4), (37), (9)

and (11), respectively, implies l
m
¼ 0. However, if l

m
¼ 0, these latter equations are identical to the pro-

posed algorithm defined by Eqs. (4), (5), (9) and (11). Hence, the proposed scheme can be interpreted as the

discretization of a set of index-2 DAEs that evolves over the invariant manifold l ¼ 0. In other words, the

algorithm is ‘‘self-stabilized’’.

In view of Eq. (37), it should be noted that the use of the mid point rule for the velocity-displacement

relationship, Eq. (5), is sufficient to guarantee lm ¼ 0. However, this choice is clearly not sufficient to
achieve stabilization of the constraints. In the original work of Gear et al. (1985) the GGL scheme was

developed to enable the satisfaction of the velocity constraint at the final time, in the same way that the

position constraint is to be satisfied. Numerical dissipation was used to stabilize the resulting system, and

the additional Lagrange multiplier l does not vanish. In the present approach, the velocity constraint is not

imposed at the final time, together with the position constraint, but rather at the midpoint. This key dif-

ference enables achieving constraint stabilization without resorting to numerical dissipation and without

introducing an additional Lagrange multiplier. This seems to suggest that imposing both position and

velocity constraints at the same instant in time over-constrains the system.

6. Numerical examples

6.1. The rigid body

Consider the rigid body depicted in Fig. 1. The position vector of its reference point O is denoted u and
its orientation is determined by an orthonormal basis B :¼ ðe1; e2; e3Þ. The position vector of an arbitrary

point P of the rigid body is then xP ¼ uþ s�1e1 þ s�2e2 þ s�3e3, where s� are the components of the position

vector of point P with respect to point O, measured in B. The kinetic energy of the rigid body is readily

found as K ¼ 1
2
_dd

T
M� _dd, where array d stores the degrees of freedom of the system dT ¼ ½uT; eT

1 ; e
T
2 ; e

T
3 
, and

the mass matrix is

M� ¼

M00I M01I M02I M03I
M01I M11I M12I M13I
M02I M12I M22I M23I
M03I M13I M23I M33I

2
664

3
775: ð39Þ

I denote the 3 � 3 identity matrix, M00 ¼
R
V qdV is the total of the body, where q is the material density and

V the volume of the body. M0i ¼
R
V qs�i dV then defines the first moments of inertia of the body, and

Mij ¼
R
V qs�i s

�
j dV is closely related to the tensor of moments of inertia.
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The kinematics of the rigid body is defined by the twelve degrees of freedom stored in array d. Clearly,

six constraints must be imposed: three conditions on the normality of vectors e1, e2 and e3, and three

additional constraints enforcing their orthogonality. The array of constraints writes

C ¼

ðeT
1 e1 � 1Þ=2

ðeT
2 e2 � 1Þ=2

ðeT
3 e3 � 1Þ=2

eT
2 e3

eT
1 e3

eT
1 e2

2
6666664

3
7777775
: ð40Þ

The equations of motion of the system are then M�€dd þ Bk ¼ F , where k is an array of six Lagrange

multipliers, F the array of externally applied forces and B the constraint Jacobian matrix

Bðe1; e2; e3Þ ¼

0 0 0 0 0 0
e1 0 0 0 e3 e2

0 e2 0 e3 0 e1

0 0 e3 e2 e1 0

2
664

3
775: ð41Þ

The discretized equations of motion then become M�ðvf � viÞ=Dt þ Bðe1m; e2m; e3mÞkm ¼ F m, where

ekm ¼ ðeki þ ekf Þ=2; the velocity-displacement relationship ðd f � d iÞ=Dt ¼ ðvf þ viÞ=2, and the constraint

equation, Eq. (9). It is readily verified that BTðe1m; e2m; e3mÞðd f � d iÞ ¼ Cf � Ci, as required by condition (6).

A rigid body with the following properties was simulated: M00 ¼ 1:8 kg, ðM01;M02;M03Þ ¼
ð0:18;�0:72; 0:54Þ kg m, ðM11;M22;M33Þ ¼ ð0:2; 0:7; 0:4Þ kg m2, and ðM12;M13;M23Þ ¼ ð�0:012; 0:015;
�0:023Þ kg m2. The rigid body had an initial velocity vT

0 ¼ ½5; 0; 0
 m/s and initial angular velocity
xT

0 ¼ ½0; 4; 0
 rad/s. The configuration of the rigid body was computed for 5 s period using the proposed EP

algorithm with a constant time step Dt ¼ 0:0125 s. Fig. 2 shows the components of vectors e1 and e2,

whereas Fig. 3 depicts the angular velocity vector and the first three Lagrange multipliers, k11, k22, and k33.

The displacement and velocity level constraints for each of the six constraints were satisfied to machine

accuracy, as was the energy preservation condition. These results illustrate the performance obtained using

the EP algorithm: stable predictions are obtained without resorting to a dissipative algorithm; none of the

computed quantities exhibit oscillations of a numerical origin. Next, the ED scheme was used for this

problem and its predictions were in excellent agreement with those of the EP algorithm. Fig. 4 shows the
results of a convergence study performed for both EP and ED schemes. The displacement, velocity, and

Fig. 1. Configuration of the rigid body.
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mid-point Lagrange multiplier components all exhibit quadratic or cubic convergence rates for the EP and

ED algorithms, respectively.

6.2. The rigid body/universal joint system

The second example deal with a rigid body attached to the ground by means of a universal joint, as

depicted in Fig. 5. The upper component of a universal joint is connected to an inertial point O and rotates
at a constant angular velocity X with respect to an inertial basis I :¼ ði1; i2; i3Þ such that

d1ðtÞ ¼ cosðXtÞi1 � sinðXtÞi3. The lower component of the universal joint connects at point O0 to a rigid

body with an attached orthonormal basis B :¼ ðe1; e2; e3Þ. Points O and O0 are coincident. The kinematics

of the universal joint impose the orthogonality of unit vectors d1 and e3, i.e. the rheonomic holonomic

constraint C ¼ eT
3 d1ðtÞ ¼ 0. The position vector of the center of mass of the rigid body with respect to point

O0 is denoted g. Gravity acts on the system as indicated in Fig. 5.

The equations of motion of the system are readily found as ðRh�Þ� þ k~ee3d1 þ m0~ggg ¼ 0, where R is the

rotation tensor from I to B measured in I, h� ¼ I�x� are the components of the angular momentum
vector in the material system B, k is the Lagrange multiplier, m0 the total mass of the body, and g the

acceleration of gravity vector. The tensor of moments of inertia of the rigid body with respect to point O0

measured in B is denoted I�, and the angular velocity vector in the material system is x�.

Although the existence of a discretization of the constraint gradient array that satisfies Eq. (6) is

guaranteed by the mean value theorem, it is not always easy to find an analytical expression for Bm. In

practice, it can be constructed in the following manner
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Fig. 2. Time history of the orientation vector e1 (top figure) and e2 (bottom figure). Components along i1 (�), i2 (�) and i3 (M).
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Fig. 3. Top figure: time history of the angular velocity vector; component along i1 (�), i2 (�) and i3 (M). Bottom figure: time history of

the Lagrange multipliers; component k11 (�), k22 (�), k33 (M).
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rigid body problem. EP algorithm: solid line; ED algorithm: dashed line.
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Cf � Ci ¼ d
T

1fe3f � d
T

1ie3i ¼ d
T

1f 1

 
þ ~rr

2

!
e3m � d

T

1i 1

 
� ~rr

2

!
e3m; ð42Þ

where r are the Rodrigues parameter (see Appendix A) of the incremental rotation tensor from Ri to Rf , and

e3m ¼ ðe3f þ e3iÞ=2. It then follows that

Cf � Ci ¼ rT~ee3md1m þ eT
3mðd1f � d1iÞ; ð43Þ

where d1m ¼ ðd1i þ d1fÞ=2. Comparing this relationship with Eq. (6), it is clear that Bm ¼ ~ee3md1m; the second

term corresponds to the discretization of dC=dt, since this is a time dependent constraint. Following a

similar path, the change in the potential of the gravity load, V ¼ m0gTg, can be expressed as

Vf �Vi ¼ m0gTðg
f
� g

i
Þ ¼ m0gT~rrg

m
¼ �rTm0~gggm

; ð44Þ

where Eqs. (A.2) and (A.3) were used. These developments suggest the following discretization of the

equations of motion

Rfh
�
f � Rih

�
i

Dt
þ km~ee3md1m þ m0~gggm

¼ 0; ð45Þ

supplemented by velocity-displacement relationship: x�
m ¼ RT

i r=Dt. As discussed in Section 3.2, rheonomic

constraints can perform work, see Eq. (20). The work done by the driving torque at the universal joint is

DWC ¼ �kmeT
3mðd1f � d1iÞ.

A rigid body with the following properties was simulated: total mass, m0 ¼ 1:8 kg, center of mass lo-
cation, g ¼ ð0:1;�0:4; 0:3Þ m, moments of inertia, ðI�11; I

�
22; I

�
33Þ ¼ ð1:1; 0:6; 0:9Þ kg m2, and

ðI�12; I
�
13; I

�
23Þ ¼ ð0:012;�0:015; 0:023Þ kg m2. The prescribed angular velocity is X ¼ 1:0 rad/s and g ¼ 9:81

m/s2. The system was modeled for a complete revolution of the universal joint using the EP scheme; 400

equal time step were used.

Fig. 6 shows the orientation and angular velocity of the rigid body as a function of the non-dimensional

time s ¼ Xt=2p. The orientation of the body is represented by the components of the conformal rotation

vector, and the sudden changes in their values correspond to rescaling operations that circumvent the

singularities associated with the conformal rotation vector (Bauchau and Trainelli, in press). Note that
the angular velocity of the body rapidly increases from its initial unit value under the combined effects of

the driving torque and gravity loading. Fig. 7 depicts the magnitudes of the Lagrange multiplier and driving

Fig. 5. Configuration of the rigid body connected to a universal joint.
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torque. Here again, the computation is stable and all predicted quantities present smooth time histories

although the algorithm features no numerical dissipation.

6.3. The wind turbine system

The last example deals the two-bladed wind turbine mounted on an elastic tower, as depicted in Fig. 8
that also details the connections between the various components of the system. The physical properties are

described by Stol et al. (1999). The elastic tower, modeled with four cubic beam element, is connected at

point T to the bed plate, modeled with a single cubic beam element, by means of a revolute joint (labeled

Rvj yaw in the figure). A revolute joint (Rvj tilt) then connects the bed plate to the nacelle, modeled with a

single cubic beam element, at point S. In turn, the shaft, modeled with a single cubic beam element, is

connected to the nacelle through a revolute joint (Rvj shaft). Finally, a last revolute joint (Rvj teeter) at-

taches the hub and blades assembly to the shaft at point E. The hub is modeled as a rigid body, while each

of the two blades are modeled with six cubic beam elements, respectively. The model involved 360 degrees
of freedom associated with the 60 nodes defining the beam elements (6 degrees of freedom per node, three

displacements and three rotations). Details about the formulation of the beam element can be found in

(Bauchau, 1998; Bauchau et al., 2003). In addition, 12 Lagrange multipliers were associated with the re-

volute joints (three Lagrange multipliers for each of the four revolute joints). Finally, three constraints were

used to connect the hub to each of the two blades. The complete system involved 378 degrees of freedom, of

which 18 were Lagrange multipliers.
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Fig. 6. Time history of the rigid body conformal rotation vector (top figure) and angular velocity vector (bottom figure). Components

along i1 (�), i2 (�) and i3 (M).
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The angular velocity of the rotor was prescribed to X ¼ 6 rad/s, and two concentrated loads were applied

at the tip of the blades. The time history of these loads was

P ðtÞ ¼ P0ð1 � cosptÞ=2 t6 2;
0 t > 2;

�
ð46Þ
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Fig. 7. Time history of the Lagrange multiplier (top figure) and driving torque (bottom figure).

Fig. 8. The wind turbine problem.
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where P0 ¼ 1 kN. The dynamic response of the system was computed for 10 revolutions of the rotor using a

constant time step Dt ¼ 5 � 10�03 s. Due to the high centrifugal stiffening of the blades associated with the

spinning of the rotor, the system is stiff. At first, the EP scheme was used to integrate the equations of

motion. The predicted blade mid-span shear force and bending moment are shown in Fig. 9. This integrator

is unable to cope with the high stiffness of the system and violent oscillations are observed at each time step.
The predictions of the ED schemes are also depicted in the same figure and show that the dissipative nature

of the scheme eliminates this problem. Note that the peak-to-peak value of the shear forces was 60 times

larger for the EP scheme as compared with the ED scheme: clearly, the predictions of the EP schemes are

completely obscured by numerical noise. The ED schemes eliminates these spurious oscillations and reveals

the true peak-to-peak value of the shear forces. A similar behavior is observed for the mid-span bending

moments. Note that the predictions of the EP scheme would be of little value in a design setting: indeed, it

cannot predict stress levels to a reasonable level of accuracy.

This last example demonstrate that numerically dissipative schemes are necessary for dealing with
physically stiff system. On the other hand, the previous examples have shown that constraints can be ac-

curately enforced without resorting to numerical dissipation.

7. Conclusions

In present work, a new algorithm was developed for the enforcement of constraints within the frame-
work of nonlinear, flexible multibody system modeled with the finite element approach. Constraints are

Fig. 9. Time history of the mid-span shear force F3 (top figure) and bending moment M3 (bottom figure) in the blade. ED scheme: solid

line; EP scheme: dashed line.
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enforced through a Lagrange multiplier technique. The proposed algorithm exactly satisfies the constraints

at the displacement and velocity levels, and furthermore, it achieves nonlinear unconditional stability by

imposing the vanishing of the work done by the constraint forces. These three desirable features are inti-

mately interrelated and stem from a specific discretization of the constraint Jacobian matrix whose exis-
tence is a direct consequence of the mean value theorem. Identical convergence rates are observed for the

displacements, velocities, and Lagrange multipliers.

The algorithm accommodates scleronomic and rheonomic holonomic constraints, as well as non-holo-

nomic constraints. Both EP and ED discretizations were presented for the constraint forces. It was shown

that the proposed algorithm is closely related to the stabilized index-2 or GGL method. However, the

proposed approach does not require additional Lagrange multipliers and does not rely on numerical dis-

sipation for constraint stabilization. Unlike the classical GGL algorithm that enforces both position and

velocity constraints at the final time, the present approach enforces the velocity constraint at the mid-point
and the position constraint at the end point in time. This seems to suggest that imposing both position and

velocity constraints at the same instant in time over-constrains the system.

The desirable characteristics of the algorithm for handling the constraints are obtained without resorting

to numerically dissipative algorithms. If high frequencies are present in the system, i.e. the system is

physically stiff, ED schemes are necessary to cope with the spurious high frequency oscillations observed

when using EP algorithms.

Appendix A. Rodrigues parameters

A common representation of finite rotations (Kane and Levinson, 1985; Bauchau and Trainelli, in press)

is in terms of Rodrigues parameters, r ¼ 2n tan /=2, where / is the magnitude of the finite rotation and n
the unit vector representing the axis of rotation. The finite rotation tensor R is expressed as

RðrÞ ¼ I þ r0~rr þ
r0

2
~rr~rr; ðA:1Þ

where r0 ¼ cos2 /=2 ¼ 1=½1 þ ðrTrÞ=4
. The following multiplicative decomposition of the rotation tensor is
important

R ¼ I
�

þ 1

2
~rr
�

Rþ I
2

� �
; ðA:2Þ

and furthermore

I ¼ I
�

� 1

2
~rr
�

Rþ I
2

� �
; ðA:3Þ

where I is the identity tensor.
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